
OPENUSSD DEVELOPMENT GUIDE

DATE VERSION CHANGE AUTHOR

January 6th 2010 1.0 Initial Release d3vnull



CONTENT

Introduction

Architecture

Openussd Stack

Host Management

Session Management

OpenUSSD Manager

CLI

Web UI

Log



Introduction

OpenUSSD addresses a simple objective of giving users an all-in-one Enterprise USSD Client platform 
for integration into almost any USSD Gateway with support for protocols such as SOAP,RAW-XML,XML-
RPC,SMPP and HTTP POST.

The problem we address with OpenUSSD is that of developers having to develop various interfaces or 
integration application which offers them connectivity into a USSD Gateway hosted by a Mobile Network 
operator.
The problem with such an approach includes but are not limited to:

1. Monitoring: Keeping an eye on multiple integration applications can be such a pain especially if 
they are developed by different programmers.

2. Performance: Since implementation are in various languages, the true test of performance is 
hardly determined as individual programmers hardly go through QA processes before deployment.

3. Enhancement: There is little or no time to revisit the application to enhance its performance as 
programmers tend to focus on other projects. The project virtually comes to a halt when the 
programmer deploys his application making it difficult for others to continue.

4. Support and Continuity: It becomes difficult for a support team to fully understand the function of 
the integration application making it much harder to troubleshoot when clients complain.

Our Solution. To solve the problems above we believe the best approach is Open Source Development that 
meets enterprise requirements and evolve in features over time.

Feature List

Central Monitoring: 

OpenUSSD presents 3 ways to monitor nodes and their performances. 
a) The CLI: We present a CLI which allows administrators and support teams to access information 

about each node their installation is connected to. Our design approach is central and in the next few 
chapters we explain our motivation for such an approach. Since most Linux administrators are used to 
working from CLI this provides a much more faster access to get statuses and statistics of individual 
connections.

b) The WebUI: Since our solution is 100% implemented in Python, we take advantage of the 
Django Framework to provide a very user friendly interface that makes it easier for support teams to even 
detect situations such as break in user sessions, loss of connectivity to host

c) The Logs: This is generic to almost every Linux based application. We provide administrators 
and support teams the chance to set debug level for core services including services to each Network 
Operator.

Link Monitoring:
We have a fully functional link monitoring feature which can be configured to send email alerts when 
connectivity to an MNO is lost. This status is presented as a graph on the WebUI and as an alert message 
on the CLI. The implementation of DBus in our solution keeps you constantly informed in other processes 
about events on OpenUSSD. 

High Throughput Systems:
With implementation of high QA standards within the project, performance of the systems with various 
metrics are conducted and measured at the end of each day especially before a commit is done to the 
central repository.



Architecture

Below are 2 diagrams. Fig 1.1 shows what pertains in most organizations who have had to integrate into 
USSD gateways. Fig 1.2 shows how OpenUSSD solves the problem.

FIG 1.1

FIG 1.2 

OpenUSSD uses an approach with the implementation of multiprocessing to provide high throughout 
services. It reads a single configuration that uses a key-value pair making its setup very simple.
This eliminates the need to write and some times rewrite codes.



Libraries Required

PySMPP

ConfigParser


	Introduction
	Architecture
	Openussd Stack
	Host Management
	Session Management
	OpenUSSD Manager
		CLI
		Web UI
		Log

	Introduction
	Feature List
	Architecture
	Libraries Required


